初升高数学衔接的必要性!
2017-07-08 14:02 来源: 戴氏教育

【导读】中考成绩公布后,许多同学即将步入高中,前些天我发布《高中暑假学习计划表》一文时,有位初三毕业的同学回复“作为新高一,不着急”,这句话我听着都着急,我看过多少学生中考时140多分的,高中却不及格,初升高的衔接工作不做好,对整个高中学习的影响都是深远的。我对那位学生回复“要提前预习,否则会不适应”
 
之前有一篇文章很火《初三的这个暑假,将影响你未来十年》,这句话貌似很危言耸听,其实有一定道理的。多少人进入高中后,成为学渣,都是因为初三这个暑假没有做好高中学习的提前准备,以至于进入高中后,上课听不懂,进度跟不上,作业不会做,考试不及格,然后掉到中下水平,一蹶不振,从而影响高考,影响考大学,影响以后找工作,影响未来十年,甚至一生。
 
高中数学与初中数学有哪些不同? 
 
一是数学语言在抽象程度上突变:历来新高一学生都反映,集合、一一对应等新高一数学概念难以理解,因为不像初中数学,会有很形象的具象感觉,高中数学的语言体系,开始变得抽象,开始用“∩”“∪”“∈”“∉”“㏒”“∅”“∞”等抽象符号去表达数学意思,并且很多概念离生活很远,在日常生活中无法直观感知,似乎很“玄”,导致很多学生无法适应,甚至觉得学了一个假的数学。
 
二是思维方法向理性层次跃迁:数学语言的抽象化对思维能力提出了更高的要求,思维方法方面,对理性理解的要求更高,也就是对很多的数学信息,能够准确的领会意图,准确的处理成有用的条件。很多高中生经常搞不懂题目到底在考什么,表面上条件和结论没有半毛钱关系,这就是因为学生没形成准确翻译数学语言的能力,这种对理性理解层次方面的要求,是初中数学难以企及的。
 
三是知识内容的整体数量剧增,一般来说,初三知识点占了初中知识点的一半以上,而整个初中知识点,比之高中,可能只能占到二三成,由此可知高中数学的内容量是相当大的(虽然上海地区不用学导数、微积分、二项分布、正态分布等),加之时间紧、难度大,这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。
 
所以,新高一同学要理解新旧知识的内在联系,学会对知识结构进行梳理,并且要多做总结、归类,建立主体的知识结构网络,避免脱节。
 
☆ 现有初高中数学知识“脱节”在哪里?
 
 这8块内容入学高中前需要学习巩固,也即衔接内容的重点
 
 1.立方和与差的公式
 
这部分内容在初中教材中很多都不讲,但进入高中后,它的运算公式却还在用。很多题都是直接使用的。比如说:
 
(1)立方和公式:(a+b)(a^2-ab+b^2)=a^3+b^3;
 
(2)立方差公式:(a-b)(a^2+ab+b^2)=a^3-b^3;
 
(3)三数和平方公式:(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac;
 
(4)两数和立方公式:(a+b)^3=a^3+3a^2b+3ab^2+b^3;
 
(5)两数差立方公式:(a-b)^3=a^3-3a^2b+3ab^2-b^3。
 
 2.因式分解
 
十字相乘法在初中已经不作要求了,同时三次或三次以上多项式因式分解也不作要求了,但是到了高中,教材中却多处要用到,很多学校在高中教学过程中,都是直接当已知内容讲授的。当然,在“卡西欧计算器”当道的高中,这些因式分解方面的问题小了很多,因为都可以借助卡西欧991解二次方程或三次方程得到解决。
 
 3.二次根式中对分子、分母有理化
 
这也是初中不作要求的内容,但是分子、分母有理化却是高中函数、不等式常用的解题技巧,特别是分子有理化,在一些放缩技巧、裂项技巧、解方程、解不等式的过程中,经常使用到,所以一定要提前熟练。
 
 4.二次函数
 
二次函数的图像和性质是初高中衔接中最重要的内容,二次函数知识的生长点在初中,而发展点在高中,是初高中数学衔接的重要内容。二次函数作为一种简单而基本的函数类型,是历年来高考的一项重点考查内容,经久不衰。通过分析二次函数的开口、对称轴、与x轴的交点个数去分析相应方程的解、不等式的解、分析根的分布问题。由此衍生来的函数、方程、不等式之间的内在联系,要注意思考与理解。由根的分布问题,产生的参数分析思想、分类讨论思想、数形结合思想,可以说是整个高中框架的起点与基石。这一类问题,既是基础点、也是难点、易错点,二次函数这个坎过不去,高中数学基本上废了。所以这个内容是衔接内容的重中之重!
 
 5.根与系数的关系(韦达定理)
 
在初中,我们一般会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程,而到了高中却不再学习,但是高考中又会出现这一类型的考题,对学生有以下能力要求:
 
(1)理解一元二次方程的根的判别式,并能用判别式判定根的情况;
 
(2)掌握一元二次方程根与系数的关系,并能运用它求含有两根之和、两根之积的代数式(这里指“对称式”)的值,能构造以实数p、q为根的一元二次方程。
 
6.图像的对称、平移、翻折变换
 
初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,对称轴、给定直线的对称问题必须掌握。左加右减、上加下减的口诀要在理解的基础上牢记于心,函数图形关于直线对称、关于点对称如何变化、绝对值对函数图像的影响,这些都是要重点理解的。这对于高中数学四大思想之一的数形结合的理解与掌握,至关重要。数形结合是将高中抽象的部分具象化的重要手段,如果不懂数形结合,高中数学的难度要增加三成。
 
7.含有参数的函数、方程、不等式
 
初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点。方程、不等式、函数的综合考查常成为历年高考综合题。衔接过程中,主要要学习二次函数含参数的问题,理解二次函数、二次方程、二次不等式的内在联系,为后面的幂函数、指数函数、对数函数、三角函数与相应的幂指对方程、三角方程和幂指对不等式、三角不等式之间内在联系的理解,埋好伏笔,做好铺垫。高中数学是讲究通性通法、也重点考察通性通法的。
 
8. 平面几何部分的一些概念、性质
 
如重心、垂心、外心、内心等,如角平分线分比例性质,射影定理,圆周角,弦切角,圆幂定理等,还有直角三角比的一些内容。这些相关内容,初中生很多都没有学习,而高中教材多常常要涉及,并经常是在解题过程中直接运用,而直角三角比的一些平方关系、商数关系、倒数关系,也可以提前适当引导学习。
 
9. 卡西欧计算器的熟练使用
 
初中不允许使用计算器,但高中考试可以使用计算器。所以,这方面的衔接,也需要提前做好练习。比如,如何运用table功能分析函数的变化趋势,简单的学习二分法分析函数的零点、方程的解等,如何运用计算器求二次方程、三次方程的解,如何运用Σ功能求和、如何用计算器分析简单的三角比问题等等。计算器最好991,功能更全,拿计算器说明书,对着练练,对高中学习还是有一定帮助的~
 

推荐
课程
专题
最新资讯
专家入驻
  • 何婷婷

    何婷婷

    成都市优秀青年语文教师,多年高考中考毕业班经验,课堂激情幽默,才情四溢,爱生如子,乐于奉献...

  • 夏琪

    夏琪

    注重基础、精讲多练、讲练结合、分层要求,对工作认真负责,信赖、尊重每一位学生,让学生开心度过每一天,...

  • 敖勇

    敖勇

    化学教育学硕士,戴氏教育集团总校化学学科总监。教龄12年,6届高中毕业班教学经历,曾任国家级示范高中化...

  • 姜峰

    姜峰

    戴氏高考中考学校成都总校的英语教师,原成都市知名私立外国语总校老师,2012年~2014年在戴氏通过独特教学...

  • 汪万芬

    汪万芬

    戴氏高考中考学校成都总校优秀的政治教师,毕业于西华师范大学,专业是思想政治教育, 5年政治教学经验,铸...

  • 王珊珊

    王珊珊

    英语课程与教学论专业硕士,连续3年命中高考语法真题,续写高考押题神话,所带学生高考创造出146分的佳绩!...

其他文章